Documentation for SQL Server DeltaServer
Setup and Configuration
Note:-Make Sure Sql-Server Agent is enabled. Also, please ensure that you have run
a. Gs-agent
b. Created a space (e.g) - gs-cli deploy-space -cluster total_members=1,1 mydatagrid
 Keep this grid name handy as you will be using it later on.
1) Create a database first (right click and create a new DB):
[image:]

You will see the following:
[image:]

2) Once a database is created, create a table (for our example, let’s use Person, with columns, ID, Firstname, Lastname, Age):

USE [datagrid]
GO

/****** Object: Table [dbo].[Person] Script Date: 4/7/2014 4:03:28 PM ******/
SET ANSI_NULLS ON
GO

SET QUOTED_IDENTIFIER ON
GO

CREATE TABLE [dbo].[Person](
	[Id] [int] NOT NULL,
	[FirstName] [nvarchar](255) NULL,
	[LastName] [nvarchar](255) NULL,
	[Age] [int] NULL,
PRIMARY KEY CLUSTERED
(
	[Id] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON [PRIMARY]
) ON [PRIMARY]

GO

3) CDC must be enabled at the database level (it is disabled by default). To enable CDC you must be a member of the sysadmin fixed server role. You can enable CDC ONLY on any user database (not on system databases). Execute the following T-SQL script in the database of your choice (e.g. datagrid in the following screenshots):
declare @rc int
exec @rc = sys.sp_cdc_enable_db
select @rc
-- you will find that a new column is added to sys.databases: is_cdc_enabled
select name, is_cdc_enabled from sys.databases
[image:]
(notice that datagrid has is_cdc_enabled column = 1)
4) Now, you have to enable CDC for the table in question (in our case, Person table). Execute the following system stored procedure to enable CDC for the Person table:
exec sys.sp_cdc_enable_table
 @source_schema = 'dbo',
 @source_name = 'Person' ,
 @role_name = 'CDCRole',
 @supports_net_changes = 1
5) Verify that CDC is enabled for that table:
select name, type, type_desc, is_tracked_by_cdc from sys.tables
[image:]

6) From what you have done so far, enabling CDC at the database and table levels will create certain tables, jobs, stored procedures and functions in the CDC-enabled database. In our case, this is the datagrid table.
You will see a message that two SQL Agent jobs were created; e.g. cdc.datagrid_capture which scans the database transaction log to handle changes to the tables that have CDC enabled, and cdc.datagrid_cleanup which purges the change tables periodically.

You can examine the schema objects created by running the following T-SQL script:
select o.name, o.type, o.type_desc from sys.objects o
join sys.schemas s on s.schema_id = o.schema_id
where s.name = 'cdc'

7) Now, create another table so we can track the last LSN we (the DeltaServer) are processing:
create table dbo.Person_lsn (last_lsn binary(10))

8) Now, create a function to get the last person LSN thus:
 create function dbo.get_last_Person_lsn()
 returns binary(10)
 as
 begin
 declare @last_lsn binary(10)
 select @last_lsn = last_lsn from dbo.Person_lsn
 select @last_lsn = isnull(@last_lsn, sys.fn_cdc_get_min_lsn('dbo_Person'))
 return @last_lsn
 end

What you have done is that you have created a Scalar-valued Function. Double check this function by right clicking on Programmability->Functions->Scalar Valued Functions
[image:]

9) Now, let’s create a stored procedure that will capture as soon as next person changes are executed:

-- ==
-- Template generated from Template Explorer using:
-- Create Procedure (New Menu).SQL
--
-- Use the Specify Values for Template Parameters
-- command (Ctrl-Shift-M) to fill in the parameter
-- values below.
--
-- This block of comments will not be included in
-- the definition of the procedure.
-- ==
SET ANSI_NULLS ON
GO
SET QUOTED_IDENTIFIER ON
GO
-- ===
-- Author:		<Author,,Name>
-- Create date: <Create Date,,>
-- Description:	<Description,,>
-- ===
CREATE PROCEDURE [dbo].[Capture]
AS
BEGIN
	-- SET NOCOUNT ON added to prevent extra result sets from
	-- interfering with SELECT statements.
	SET NOCOUNT ON;
	declare @begin_lsn binary(10), @end_lsn binary(10)
 -- get the next LSN for Person changes
	select @begin_lsn = dbo.get_last_Person_lsn()
	-- get the last LSN for Person changes
	select @end_lsn = sys.fn_cdc_get_max_lsn()

	-- get all individual changes in the range
	select * from cdc.fn_cdc_get_all_changes_dbo_Person(
	 @begin_lsn, @end_lsn, 'all');
	-- save the end_lsn in the Person_lsn table
	update dbo.Person_lsn
	set last_lsn = @end_lsn
	if @@ROWCOUNT = 0
	insert into dbo.Person_lsn values(@end_lsn)

END
GO

10) You can test what you have done by some simple statements like:
[bookmark: OLE_LINK1]
insert Person values (1, 'abc', 'md', 99)
update Person set age = 199 where id = 1
delete from Person where id = 1
insert Person values (2, 'xyz', 'de', 59)
update Person set age = 299 where id = 2
delete from Person where id = 2
insert Person values (3, 'xox', 'va', 29)
update Person set age = 399 where id = 3
delete from Person where id = 3

And then, you can run

declare @begin_lsn binary(10), @end_lsn binary(10)
-- get the first LSN for Person changes
select @begin_lsn = sys.fn_cdc_get_min_lsn('dbo_Person')
-- get the last LSN for Person changes
select @end_lsn = sys.fn_cdc_get_max_lsn()
-- get net changes; group changes in the range by the pk
select * from cdc.fn_cdc_get_net_changes_dbo_Person(@begin_lsn, @end_lsn, 'all');
-- get individual changes in the range
select * from cdc.fn_cdc_get_all_changes_dbo_Person(@begin_lsn, @end_lsn, 'all');
You will see results like these
[image:]

11) Now, head on over to Visual Studio and open the project to make some customizations for your project.
In program.cs, you will find values like string _connStr = "Data Source=RONNIE-PC\\SQL2012;Initial Catalog=datagrid;Integrated Security=True";
Please change them to reflect values according to your set up. You can easily copy this string from visual studio itself (if you have configured the database connection). Head over to Server explorer in Visual Studio, click on Data Connections->your database connection. On the right hand side, properties window you will see the connection string thus:
[image:]
Copy this entire connection string into your program. Please note that there are 4 such entries. Please change all of them.
12) Change your group or space connect string if you desire to. Currently, it is set to default
ISpaceProxy spaceProxy = GigaSpacesFactory.FindSpace("jini://*/*/mydatagrid?groups=XAP-9.7.0-ga-NET-4.0.30319-x64");
Please note that this is the same grid name that you defined before (in first step)
13) Now, you can build the solution and test it out. For this, you can either run it from Visual Studio (Ctrl+F5) or you can head over to DeltaServer\DeltaServer\bin\Debug and run the DeltaServer.exe. Or if you are creating a release version, you can run it from there. Upon running the program, you should be prompted to insert/update/delete or exit the program
[image:]
14) As you insert/update/delete, please note such changes in the gs-webgui as below:

[image:]

15) [bookmark: _GoBack]If you would like to, you can change the frequency of updates thus (in program.cs)
a. timer.Interval = 5000; //set interval of polling here
image6.png

image7.png

image8.png

image9.png

image1.png

image2.png

image3.png

image4.png

image5.png

